Early Season Abundance of *Culex restuans*as an Indicator of West Nile Virus Activity

Emily Evans, Dariana Rodriguez, Adam Slaton

Mosquito Surveillance at Valdosta State University

Laboratory of Dr. Mark Blackmore

- 14 trap sites in Lowndes County
- Gravid and CDC Light traps
- Mosquitoes identified to species
- Vector species tested for arboviruses

Culex in Lowndes County

Culex coronator

Cx. erraticus

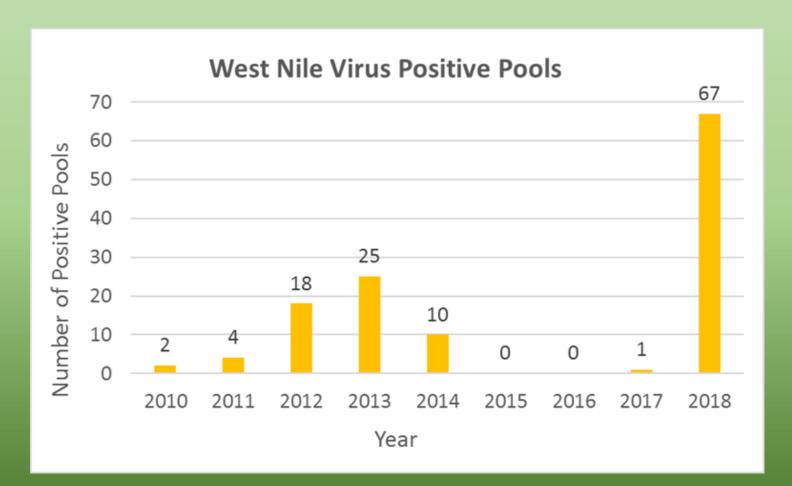
Cx. nigripapus

Cx. restuans

Cx. quinquefasciatus

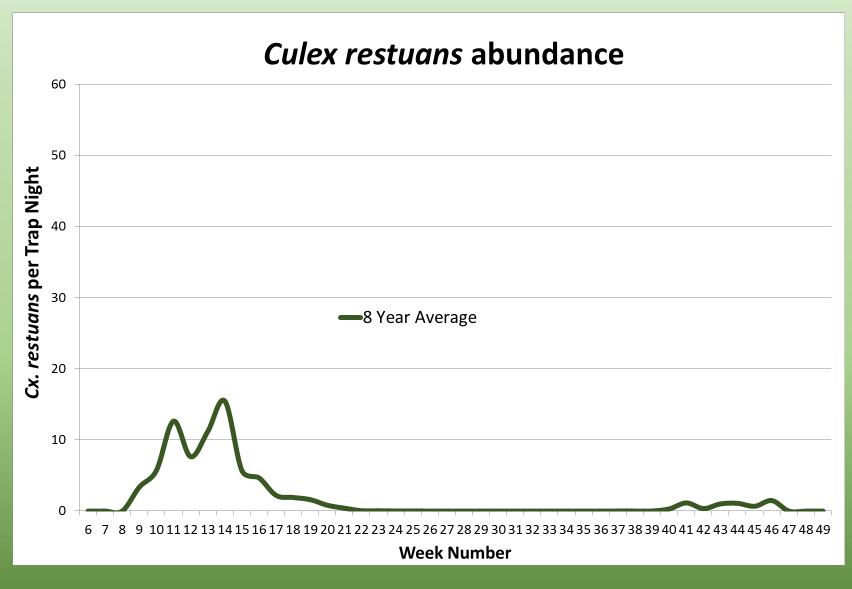
Cx. salinarius

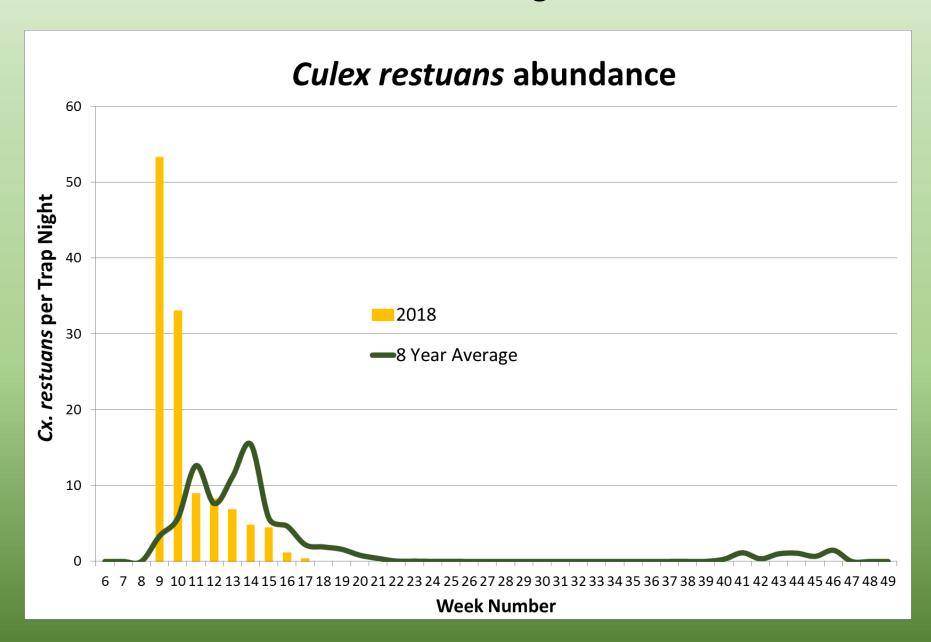
Cx. territans


Pooled for testing

Culex quinquefasciatus, photo by James Newman, University of Florida

2018 West Nile Virus in Lowndes


• 2018: record high numbers of WNV positive pools


Culex restuans

- Populations peak in spring and fall
- Tested for WNV
 - seldom in large numbers due to summer decline

Cx. restuans abundance higher in 2018

Correlation?

 Is there an association between increase in Cx. restuans & number of WNV positive pools?

- 3 potential factors:
 - 1) How far into the year Cx. restuans persist
 - 2) Part of the year before Cx. quinquefasciatus becomes more abundant
 - 3) Overall abundance of Cx. restuans

Cx. restuans Data

• Compiled data from 2010 – 2018:

• Last week of Cx. restuans persistence

• Last week where ratio of *Cx. restuans* to *Cx. quinquefasciatus* exceeded 1

- Average number of Cx. restuans per gravid trap for each week
 - Average of all weeks = abundance

WNV Infection Rates

Sites with high risk of WNV exposure assessed

PoolScreen software: maximum likelihood estimate of WNV infection rates in Cx. quinquefasciatus

Statistical Analyses

Correlation coefficients calculated for each variable and MLE's

Correlated variables used to produce regression line

Last Week of Persistence

Year	Week#
2010	21
2011	25
2012	25
2013	23
2014	23
2015	21
2016	22
2017	20
2018	23

Crossover Week

Year	Week#
2010	17
2011	15
2012	11
2013	10
2014	18
2015	14
2016	15
2017	12
2018	16

Cx. restuans Abundance

Year	Mosquitoes/Trap
2010	5.7
2011	3.7
2012	3.9
2013	1.6
2014	9.4
2015	5.5
2016	7.1
2017	1.1
2018	13.4

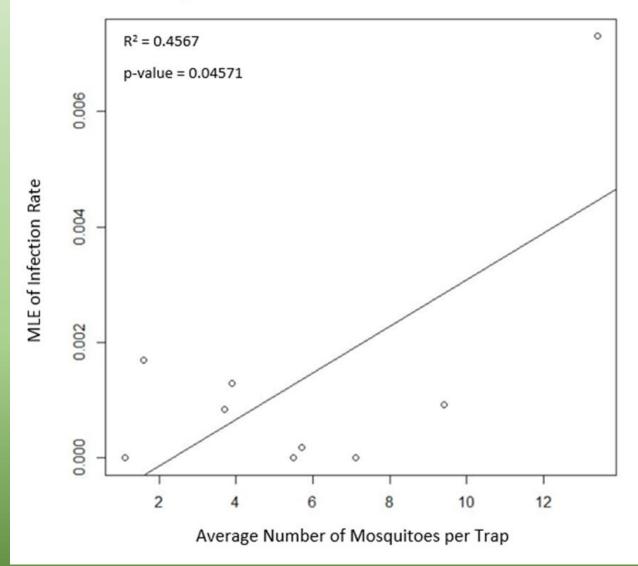
Maximum Likelihood Estimates of Infection Rates

Year	Infection Rate
2010	0.00018
2011	0.00085
2012	0.00130
2013	0.00170
2014	0.00092
2015	0.0000
2016	0.0000
2017	0.0000
2018	0.00730

Correlation Coefficients

Last week of persistence = 0.29

Week of abundance shift = 0.12


Cx. restuans abundance = 0.68

Regression

y=0.00043x-.00094

 Predicts infection rate from 2019 data that is within the actual confidence interval

Regression Line for Abundance and MLE

Discussion

• Cx. restuans likely amplifies virus early in the year, before emergence of Cx. quinquesfasciatus

• Cx. restuans overwinter as adults with minor activity

• If WNV overwinters in vector, Cx. restuans more likely

Additional variables also important

Thank You!

Dr. Mark Blackmore - access to data

Joshua Brown – assistance with R